Modified Transdermal Technologies: Breaking the Barriers of Drug Permeation via the Skin
نویسندگان
چکیده
Transdermal drug technology specialists are continuing to search for new methods that can effectively and painlessly deliver larger molecules in therapeutic quantities to overcome the difficulties associated with the oral route, namely poor bioavailability due to hepatic metabolism (first pass) and the tendency to produce rapid blood level spikes (both high and low). Transdermal delivery can improve the therapeutic efficacy and safety of drugs by more precise (i.e., site-specific) way but spatial and temporal placement within the body is required to reduce both the size and number of doses necessary to achieve the objective of systemic medication through topical application to the intact skin surface. Modulation of formulation excipients and addition of chemical enhancers can increase drug flux but that is not sufficient to ensure delivery of pharmacologically effective concentration of drug therefore, several new active rate controlled TDDS technologies (electrically-based, structure-based, velocity-based, etc.) have been developed and commercialized for the transdermal delivery of ‘troublesome’ drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation into an effective DDS. In-depth analysis, formulation approaches, applications, advantages and disadvantages of these newer technologies are discussed.
منابع مشابه
The effect of acid modification of porcine mucin on its drug release and skin permeation properties in insulin transdermal patches
The study aimed at determining the effect of acid modified porcine mucin powder on the release and permeation of insulin in transdermal patches. Various batches of insulin patches were prepared by solvent casting method using polysorbate 80 as emulsifying agent and acid treated and untreated mucin powders as base. The patches were evaluated for their physical properties, folding endurance, moi...
متن کاملEnhanced Controlled Transdermal Delivery of Mexazolam Using Ethylene-vinyl Acetate
Repeated oral administration of mexazolam, an anti-anxiety agent, may cause adverse effects such as gastric disturbance, drowsiness, and ataxia due to transiently high blood levels. Transdermal administration would avoid the systemic side effects and gastric disorders after oral administration. We have developed a matrix using ethylene-vinyl acetate (EVA), a heat-processible and flexible mat...
متن کاملEnhanced Controlled Transdermal Delivery of Mexazolam Using Ethylene-vinyl Acetate
Repeated oral administration of mexazolam, an anti-anxiety agent, may cause adverse effects such as gastric disturbance, drowsiness, and ataxia due to transiently high blood levels. Transdermal administration would avoid the systemic side effects and gastric disorders after oral administration. We have developed a matrix using ethylene-vinyl acetate (EVA), a heat-processible and flexible mat...
متن کاملMeloxicam transdermal delivery: effect of eutectic point on the rate and extent of skin permeation
Objective(s):Drug delivery through the skin can transfer therapeutic levels of drugs for pharmacological effects. Analgesics such as NSAIDs have gastrointestinal side effects and topical dosage forms of these drugs are mainly preferred, especially for local pains. Meloxicam is one of NSAIDs with no topical form in the market. In this research, we attempted to quantify the skin permeation of a m...
متن کاملFormulation and characterization of alprazolam transdermal gel based on nanoliposomes
Background: Nowadays transdermal drug delivery systems (TDDS), as an appropriate replacement for oral and parenteral dosage forms, are developing. These systems which designed to transport drugs through skin layers into the systemic circulation, have several benefits such as avoiding first-pass metabolism, sustained and controlled drug release, reducing side effects, and ease of use. The aim of...
متن کامل